Lazy Parameter Tuning and Control: Choosing All Parameters Randomly from a Power-Law Distribution

نویسندگان

چکیده

Most evolutionary algorithms have multiple parameters and their values drastically affect the performance. Due to often complicated interplay of parameters, setting these right for a particular problem (parameter tuning) is challenging task. This task becomes even more when optimal parameter change significantly during run algorithm since then dynamic choice control) necessary. In this work, we propose lazy but effective solution, namely choosing all (where makes sense) in each iteration randomly from suitably scaled power-law distribution. To demonstrate effectiveness approach, perform runtime analyses $(1+(\lambda,\lambda))$ genetic with three chosen manner. We show that on one hand can imitate simple hill-climbers like $(1+1)$ EA, giving same asymptotic problems OneMax, LeadingOnes, or Minimum Spanning Tree. On other hand, also very efficient jump functions, where best static are different those necessary optimize problems. prove performance guarantee comparable known parameters. For most interesting case size $k$ constant, our asymptotically better than what be obtained any choice. complement theoretical results rigorous empirical study confirming suggest.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lazy Paired Hyper-Parameter Tuning

In virtually all machine learning applications, hyper-parameter tuning is required to maximize predictive accuracy. Such tuning is computationally expensive, and the cost is further exacerbated by the need for multiple evaluations (via crossvalidation or bootstrap) at each configuration setting to guarantee statistically significant results. This paper presents a simple, general technique for i...

متن کامل

Frequency Analysis of FG Sandwich Rectangular Plates with a Four-Parameter Power-Law Distribution

An accurate solution procedure based on the three-dimensional elasticity theory for the free vibration analysis of Functionally Graded Sandwich (FGS) plates is presented. Since no assumptions on stresses and displacements have been employed, it can be applied to the free vibration analysis of plates with arbitrary thickness. The two-constituent FGS plate consists of ceramic and metal graded thr...

متن کامل

Classical and Bayesian Inference in Two Parameter Exponential Distribution with Randomly Censored Data

Abstract. This paper deals with the classical and Bayesian estimation for two parameter exponential distribution having scale and location parameters with randomly censored data. The censoring time is also assumed to follow a two parameter exponential distribution with different scale but same location parameter. The main stress is on the location parameter in this paper. This parameter has not...

متن کامل

Randomly sampling the chromospheric peak power distribution

We have analyzed the UV continuum light curves of 2535 pixels obtained during fifteen separate observations of active regions with the Ultraviolet Spectrometer and Polarimeter (UVSP) on board the solar maximum mission in 1989. Specifically we have looked for periodicities. In the power spectra of 738 light curves (i.e., 29%), evidence was found for periodicities at multiple frequencies. For eac...

متن کامل

a study of relationship between knowledge sharing and organizational agility among personnel in esfahan power electric distribution company

پژوهش حاضر به بررسی رابطه بین تسهیم دانش و چابکی سازمانی در شرکت توزیع برق استان اصفهان پرداخته است . ابزار سنجش در این پژوهش پرسشنامه می باشد . به منظور سنجش متغیر تسهیم دانش از پرسشنامه وانگ و وانگ و جهت سنجش چابکی سازمانی از پرسشنامه چاربونیر استفاده شده است . هدف پژوهش حاضر تحلیل رابطه میان تسهیم دانش و چابکی سازمانی از دید کارکنان شرکت توزیع برق استان اصفهان می باشد . جامعه آماری این پژوه...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algorithmica

سال: 2023

ISSN: ['1432-0541', '0178-4617']

DOI: https://doi.org/10.1007/s00453-023-01098-z